The Application and Usefulness of the Ratio k_{cat}/K_{M}

Daniel E. Koshland, Jr.

Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3206

Received December 12, 2001

The ratio of two important constituents in enzyme action, $k_{\rm cat}$ and $K_{\rm M}$, has become of value and provides insight into enzymatic mechanisms and the functional effects of enzyme mutations. It is timely to examine how this ratio is used and where it can be effectively applied. It has been called on some occasions the "specificity constant" and on other occasions, the "performance constant," and it is of interest to examine which then is the most accurate and useful way to utilize this ratio. © 2002 Elsevier Science (USA)

INTRODUCTION

In Michaelis-Menten terms, where the enzymatic reaction is as shown in Eq. [1]

$$E + S \rightleftharpoons ES$$

$$ES \to E + P$$
[1]

the constants $k_{\rm cat}$ and $K_{\rm M}$ are equal to k_2 and $(k_{-1} + k_2)/k_1$, respectively. Thus $k_{\rm cat}/K_{\rm M}$ is $k_2k_1/(k_{-1} + k_2)$. Under these circumstances, it is clear that $k_{\rm cat}/K_{\rm M}$ will equal (a) k_1 when $k_{-1} \ll k_2$ and (b) k_2 k_1/k_{-1} when $k_2 \ll k_{-1}$.

THE SPECIFICITY CONSTANT

The ratio $k_2/K_{\rm M}$ has been referred to as "the specificity constant" (1) because the relative velocities of two substrates in competition for a single enzyme (v_1/v_2) will be given by $([s_1]k_{\rm cat1}/K_{\rm M1})([s_2]K_{\rm cat2}/k_{\rm M2})$. However, the term "specificity constant" seems broad and can be deceptive. The specificity of an enzyme often is identified in textbooks with the differences between general chemical structures such as proteins vs carbohydrates or between stereoisomers, e.g., "proteases are specific for hydrolyzing peptide bonds or chymotrypsin is specific for 1 rather than d isomers" (3). One would expect that a parameter identified as "specificity constant" would provide a means of contrasting the specificities of different enzymes towards their substrates. That is not the case, however, for the ratio $k_{\rm cat}/K_{\rm M}$ (a carbohydrate substrate, S, for a kinase could in fact have exactly the same $k_{\rm cat}/K_{\rm M}$ as peptide substrate, S, for a protease).

In fact, the use of the term specificity constant may have led some authors (1) to

use it to evaluate mechanisms of specificity such as the induced fit theory, an analysis that went far astray. The induced fit theory was postulated in the era before crystallography to explain why some smaller substrates fail to react even though they would be expected to according to the template lock and key theory (3). A classic example involved the need to explain why H₂0 was a poor substrate for hexokinase whereas glucose was a good substrate. The induced fit theory (3a) postulated that the good substrate (glucose) had to induce a conformational change to bring the catalytic groups into alignment whereas the poor substrate (H₂0) could not. The X-ray evidence of Steitz (4) that glucose induced such a conformational change and H₂0 did not was one of the first pieces of x-ray evidence that the induced fit theory was correct. The crystallography for many enzymes and the kinetic evidence is now so large that there is little doubt of its correctness. Using $(k_{cat}/K_{\rm M})$ as a criterion of specificity led the authors to postulate that induced fit could not contribute to specificity when simple common sense and data like that for hexokinase clearly shows the opposite. The authors made other errors such as assuming that the conformations induced by both the poor substrate and the good substrate were the same (1) (an assumption contrary to any logic of induced fit and one that made their erroneous conclusions foreordained). My guess is that the use of the term "specificity constant" for $(k_{cat}/K_{\rm M})$ led them to a series of incorrect assumptions that managed to hide the simple common sense error of their conclusion. (Conformational change can be part of k_{cat} and/or K_{M} , but $k_{\text{cat}}/K_{\text{M}}$ does not evaluate either conformational change or the ability to discriminate between substrate structures.)

THE PERFORMANCE CONSTANT

In studies on the specificity of isocitrate dehydrogenase the $k_{\rm cat}/K_{\rm M}$ s of a series of modified malate derivations (isocitrate, malate, methyl malate, etc.) were compared and described as the "performance constants" (2). As described in the derivation above, $k_{\rm cat}/K_{\rm M}$ will sometimes be equal to k_2K_a (where K_a is the association constant) when $k_2 \ll k_1$, which it was for isocitrate dehydrogenase. The association constant cannot always be assumed to be equal to the reciprocal of $K_{\rm M}$ but in any case $1/K_{\rm M}$ is usually a rough indication of the affinity. Hence, $k_{\rm cat}/K_{\rm M}$ will be a combination that will go up as the enzyme shows higher affinity for the substrate and higher catalytic rates. Thus, in general, the higher $k_{\rm cat}/K_{\rm M}$, the better the enzymatic performance, whether the change results from a mutation or a change of substrate.

For isocitrate dehydrogenase, Doyle *et al.* (5) studied the effect of mutations on $k_{\rm cat}$ and $K_{\rm M}$ separately. Sometimes a mutation raised $k_{\rm cat}$ (the catalytic power) and also decreased $K_{\rm M}$ (increasing the affinity of the enzyme), both changes that increased the performance of the enzyme. On other occasions, an improvement in $k_{\rm cat}$ was accompanied by a decrease in affinity. The separate analyses for $k_{\rm cat}$ and $K_{\rm M}$ are useful but the combined term $k_{\rm cat}/K_{\rm M}$ would summarize the net advantage or disadvantage of a mutation to the enzyme in one constant. The term "performance constant" seems to be a more accurate and descriptive designation for this concept than the "specificity constant."

Another term, the "enzymatic proficiency," has been suggested by Wolfenden (6) and Lee and Houk (7) to relate the catalytic power of an enzyme to the rate of noncatalyzed reaction. Therefore it would seem more appropriate to use the term

"performance constant" for $k_{\rm cat}/K_{\rm M}$, and "enzymatic proficiency for $k_{\rm enzyme}/k_{\rm nonenzyme}$, and save the name "specificity constant" for some system, yet to be discovered, that can quantify differences in chemical structures so that the specificity gap between, for example, a protease and a carbohydrase can be quantified.

ACKNOWLEDGMENTS

The author thanks the NIH for financial support and Dr. Evette Radisky for good suggestions on the manuscript.

REFERENCES

- 1. Fersht, A. (1984) Enzyme Structure and Mechanism, W.H. Freeman, NY.
- 2. Dean, A., Shiau, A., and Koshland, D. E., Jr. (1996) Protein Sci. 5, 341-347.
- 3. Westley, J. (1969) Enzymatic Catalysis, Wiley.
- 3a. Koshland, D. E., Jr. (1958) Proc. Natl. Acad. Sci USA 44, 98.
- 4. Anderson, C. M., Zucker, F. H., and Steitz, T. A. (1979) Science 204, 325.
- 5. Doyle, S. A., Fung, S. Y. F., and Koshland, D. E., Jr., (2000) Biochemistry 39, 14348-14355.
- 6. Radzicka and Wolfenden, R. (1995) Science 267, 90-93.
- 7. Lee, J. K., and Houk, K. N. (1995) Science 267, 942-945.